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SUMMARY 

A computer simulation is made of cellular convection in a moist atmosphere in an endeavour to obtain 
a computer model which more closely approximates the observed modes of convection. A finite element 
Galerkin technique, with Taylor approximation and Crank-Nicolson, is employed and comparisons are 
made with the author's earlier finite element models of convection in an absolutely unstable atmosphere and 
with finite difference models. It is found that the inclusion of the moisture effects alters the structure of a cell 
to that of a narrow ascending region and a wider descending region with the former of larger velocities than 
the latter, and also alters the preferred mode of convection by increasing the aspect ratio. This more closely 
resembles that which is observed in the atmosphere. 
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I NTR OD U CTIO N 

Agee and Dowell' have recorded that observational studies of mesoscale cellular convection 
indicate that the aspect ratios are typically of the order of 20. Mathematical and laboratory 
models have not been able to simulate this. It is possible that important physical mechanisms 
which tend to broaden the cell geometry are absent from the absolutely unstable model. 
A non-linear finite element study is made of moist atmospheric convection to determine, 
principally, the effect of the moisture inclusion on the aspect ratio and the cell structure and also 
to understand some of the properties of the inclusion of the moisture. The moist model of Van der 
Borght and Agee2 imposed the observed aspect ratio through an averaging technique and 
obtained the appropriate convection but the reverse has not been attained. 

Satellite photographs, as depicted in Agee and Dowell' and others, show cumulus convection 
occurring as a tesselation of cells in some polygonal plan, which many observers classify as 
hexagonal, an assumption which has been found to be quite appropriate as evidenced in the 
results of the mathematical model of Van der Borght and Agee.' A two-dimensional mathemat- 
ical model similar to that of this research has been used by Sheu et aL3 to gain some insight into 
the physical processes of the dynamics of these cells. They used a finite-difference algorithm to 
effect solutions. 

Observations also indicate that convective clouds are aligned parallel to the vertical wind 
shear.4 This conclusion agrees with the laboratory experiment' and the theory6 which show the 
Benard convection cells in the fluid layer heated from below are replaced by longitudinal rolls 
parallel to the flow in which shcar i s  introduced. Suitability of the rnathcmatical model for 
convective rolls has been discussed in Reference 7. 
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It is further noted that the motion of the flow in closed cells is upwards in the middle and down 

The computations were carried out on a Burroughs 6700 with an average speed of 0.05 
on the sides whereas for an open cell the motion is in the reverse. 

megaflops. 

MATHEMATlCAL MODEL 

The non-dimensional system of equations for moist convection has been derived in Mann' for 
two-dimensional motion and found to be 

a y  R dT 
a cx 2t  -=J(q ,$ ) - - -+V2y ,  

y =  - V 2 $ ,  

where 

$ = streamfunction, 
9 = y-component of vorticity, 
T= temperature, 

g =gravitational acceleration, 

B =eddy viscosity, 
K = eddy thermal diffusivity, 

S =latent heat factor, 
d:  layer thickness, 
J: Jacobian, 
R = y A T d 3 / T o ~ v  is the Rayleigh number, 
c = V / K  is the Prandtl number. 

x, z =rectangular axes, 

To =reference temperature, 

AT= temperature difference across the layer, 

(4) 

The term including S in  (2) provides the latent heat effects on the buoyancy drive in 
the development of cumulus clouds. The hydrostatic equation is used in the process of simplifying 
the equations. This is reasonable for non-rotating motion, particularly with a Boussinesq 
approximation. 

The system operates for atmospheric cellular convection with a saturated updraught from the 
base. The system may be extended to include the conservation equations for water vapour and 
liquid water. The potential temperature model of Asai and Nakasuji' is similar to the indepen- 
dent derivation presented here. The potential temperature and absolute temperature models are 
equivalent for a shallow layer of the atmosphere. Van der Borght and Agee' used a moist model 
with an imposed hexagonal planform. For the case in which the region has a saturated updraught 
from the base, it can be shown that their model corresponds to that of this research. This simple 
model is appropriate for the initial stages of non-linear finite element modelling of moist 
atmospheric convection. 
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BOUNDARY CONDITIONS 

A major difficulty in modelling atmospheric convection with a mathematical model, lies in the 
imposition of realistic boundaries. Laboratory models of atmospheric convection experience 
similar difficulties. 

A rectangular domain has been chosen to enable comparisons to be made with various finite 
difference and approximation models. The horizontal extent x E [0, D] and the vertical height 
z E [0, 11 define this non-dimensional domain. 

The lower boundary is uniformly maintained at  a constant scaled temperature of zero with the 
upper boundary held at a non-dimensional temperature of - 1. The lateral boundaries have zero 
heat flux across them. This may be interpreted as imposing periodicity, or, in the case of 
laboratory convection, as imposing insulated lateral boundaries. It may be assumed, without loss 
of generality, that the domain portrays one-half of a symmetric region of the atmosphere and, 
therefore, one lateral boundary condition on heat flux is quite valid. The imposition of the same 
condition on the other lateral boundary would seem to restrict the number of cells in a region to 
integer multiples of half-cells. However, there is difficulty in imposing a suitable replacement. 

With the velocity of the fluid u, = (u, w), the tangential viscous stress is zero on both upper and 
lower boundaries (free boundaries) giving 

dU -=o on z=O, 1 
a 2  

or, using the continuity condition, 

82W 
-=O onz=0 ,1 .  
8 Z Z  

There is no flow across the upper and lower boundaries: 

w=O on z=O,1. ( 7 4  
There is no mass flux across the lateral boundaries: 

u = O  onx=O,D. (7b) 
No tangential viscous stress along the lateral boundaries implies 

aw 

L3X 
_- -0 o n x = O , D .  

These may be readily converted to values for IC/ and q and presented, with the above, in Table I. 
It is noted that free boundaries are unrealizeable in a laboratory but are appropriate for 

large-scale geophysical phenomena where convection layers are most often bounded by a free 
surface or by a region of stable fluid. 

LOCAL ANALYSIS AND PARAMETER VALUES 

With the boundary conditions of Table I, the application of the local analysis of Chandrasekhar" 
and the use of a one-mode approximation, the marginal stability relationship for this system is 
found to be (Reference 7) 
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Table I. Boundary conditions for the non-dimensional Boussinesq transient thermal convection 

z = o  0 0 0 
z = l  0 0 -1 
x = O  0 0 0 
x = D  0 0 0 

0 0 0 
0 0 0 
0 0 
0 0 

where 

Obviously, equa 

u=wavenumber of a cell, 

271 
jb = - = wavelength of a cell, 

U 

p = absolute linear temperature gradient. 

ing S to zero, reverts the system to absolutely unstable convection. I is seen tha - 
R,, the marginal value of the Rayleigh number for which convection occurs, is lowered with the 
inclusion of the moisture effects. Applying typical atmospheric values' gives a value of S at 20°C 
to be approximately 0.5. Asai and Kasahara" obtained this value for their potential temperature 
model and in describing the compensating downward motion of cumulus clouds assigned 
S a positive value for upward saturated motion and a similar negative value for the decreasing dry 
motion. Hence, 

0.5 for w>O, 
-0.5 for w 5 0 ,  

S = {  

R is taken to be lo4, a value at which the mathematical model is valid. This enables useful 
comparisons to be made with finite difference models, both quantitatively and qualitatively. The 
flow is quite non-linear at this value and so representative of the motion involved. The Prandtl is 
taken to be unity. 

COMPUTATIONAL MODEL 

Given the system 

where 
L((h)=O, 

L = differential operator, 

= unknown function 

and choosing 4a as an unknown trial function within an element such that 

i =  1 

where 

Shi = nodal values of function, 

N i  = appropriate shape function, 

n=number of nodes in element, 

(13) 

(141 
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then the finite element Galerkin criterion produces 

N,L N i 4 i  dA")=O, j=1, ..., n, gl/de, (i:l 1 
where 

A(') = area of element, 

N ,  = the number of elements, 

N j  = weight function, shape function. 

With time j+ 1 = to+( j+  1)AL being denoted by superscript G +  l), and using an extension of the 
Taylor approximation outlined by Briley and McDonald" the Jacobian J ( 1 ,  $ ) j +  may be 
approximated by 

The application of the finite element Galerkin criterion to the three-equation system (1 H3) together 
with the use of Green's theorem on the Laplacian operator to reduce the order of the derivative and, 
hence, reduce the necessity for a higher-order shape function for the particular dependent variable, 
incorporating (17) and using the Crank Nicolson algorithm produces the Finite Element Galerkin 
Green Taylor Crank Nicolson (FEGGTC) system where values in the load matrix are from the 
previous time j- 1 

1 P 
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where 
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1 =contour of the boundary, 

N = [ N ] = [ N j  N2 . . .  N , ] ,  

S=transpose [ S ,  S2 . . . S,] 

and subscripts x and z refer to partial derivatives in those directions. 
Due to the fact that the latent heat factor S only contributes on the upward motion and 

compensates on the downward motion and that in any one element the motion may be ascending 
at one node and descending at another, S needs to be included as a matrix. It is noted that in this 
model there is no Jacobian contribution to the 'load' matrix, due to cancellation. 

RESULTS AND DISCUSSION 

In the vertical plane, a rectangular region is analysed with the vertical z:O-+l divided into Nz 
equal divisions and the horizontal x:O-+D divided into Nx equal divisions, the x and z extents 
being non-dimensional. This results in there being ( N z  x N x )  nodes and 2 ( N z -  1) ( N x -  1) 
triangles. "ODES and NUMEL refer to the number of nodes and elements, respectively, while 
IDRYS=O is a code indicating that the temperature Tincludes both linear and non-linear parts. 

The use of the streamfunction formulation has been shown extensively to produce superior 
results to the primitive variable formulation for both barotropic and baroclinic models. A great 
many of the atmospheric models use linear finite elements with linear triangular elements being 
used predominantly in barotropic models. This research illustrates that the modelling of turbu- 
lent thermal convection in the atmosphere with these elements is equally satisfactory. 
S t a n i f ~ r t h ' ~  observes that it is usually less accurate and more costly to use parabolic elements 
rather than linear elements although there is no one approach that is optimal for all problems and 
all geometries. In further support of this model, domain and discretization he indicates that an 
unstaggered mesh only presents difficulties when used with the primitive variable formulation in 
the application to barotropic models. This research indicates that turbulent cellular convection is 
equally well-discretized with a regular mesh when the I,-q formulation is used. 

Because in atmospheric cellular convection the location of the gradients of greatest values is 
unknown-mainly because it is unknown how many cells should occur different sized elements 
are not employed in general. Although it cannot be determined by finite elements how the fluid 
will convect in a domain of infinite horizontal extent, some insight may be gained by repeated 
computations for several different values of D, thereby gaining some information about the modal 
behaviour and providing a comparative analysis for the understanding of the physical phe- 
nomena. 

In the atmosphere, cumulus convection frequently occurs in a conditionally unstable layer 
because of the release of water vapour. A conditionally unstable atmosphere is one which is 
unstable for saturated ascension and stable when unsaturated and for descension. The clouds are 
formed where the ascending motion occurs and cloud-free regions exist where the descending 
motion occurs. Cloud shape is defined by that part of the saturated region in which condensation 
occurs. Two-dimensional convective rolls, which simulate the cloud streets of the atmosphere, are 
preferred in a convecting layer with significant vertical shear in the horizontal wind. Hexagonal 
planforms occur primarily over the oceans or large bodies of water under conditions of weak 
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negligible wind shear in the atmospheric boundary layer. Sheu et L Z ~ . ~  used a two-dimensional 
mathematical model to simulate the dynamics of this tesselation of hexagonal cells. Mesoscale 
cellular convection may occur as either open or closed cells which indicate descending motion 
with cloud-free centres or ascending motion with cloudy centres, respectively. 

'Free' bounding surfaces, as detailed in Table I, are maintained for the moist convection model 
even though a more realistic boundary condition at sea level would need to be considered in 
a more detailed study. Kuo and SunI4 have shown, however, that the use of the rigid boundary 
condition at the base is not required to achieve steady convection, and only serves to require 
a larger number of iterative time steps to achieve convection. SasakiIs notes that the dynamical 
boundary conditions are not the factors flattening the cells and shows that a spccific thermal 
boundary condition which is more typical of the atmosphere than the constant temperature 
condition may attribute to an increase in the aspect ratio. He imposed a zero modulation in the 
heat flux at the upper and lower boundaries. 

The dependence of the value of S on the vertical velocity implies that for this model its 
dependence on the mesh density is significant. In initial numerical trials, oscillations in the 
vertical velocity would no doubt be contributed to by the coarseness of the mesh. Condensation 
of water vapour takes place only in the ascending flow so that latent heat effects add to the 
buoyancy when the vertical velocity is upward and there is a compensating value of S for the 
downward motion. Sheu et d3 do not make this compensatory allowance for the downward flow. 
In this model it is assumed that water vapour is supplied enough to maintain the cloud layer 
saturated with water vapour against its decrease due to condensation. No evaporation takes 
place in the descending region. Yamasaki" noted that the most significant effect of liquid water is 
to reduce the intensity of the convection. It is assumed that condensed liquid water remains in the 
cloud without falling out as precipitation. 

For comparison with the solution for the absolutely unstable atmosphere.' a horizontal 
extent of D = 14 is chosen with a very fine mesh density. 

The transiency of the problem necessitates the imposition of initial conditions. Gresho et 
assert that the flow may be initiated with any temperature field but that the velocity field must be 
solenoidal. In their finite difference models, Asai and Nakasuji' chose either random or sinusoidal 
temperature perturbations to initiate the flow. Comparisons are presented here of the following 
initialization schemes which all include $ = y = 0 everywhere: 

(i) T(x,z)= - Random(x,z), O <  Random(x,z)< 1, everywhere except on z=O, (24) 

(ii) T(x,z)= - 1 everywhere except on z=O. (25) 
These most appropriately simulate atmospheric conditions with the former producing a closed 
cell and the latter an open cell as for dry convection. This was discussed in Reference 17 as being 
a good simulation of the atmosphere. The closed cell and its various properties are illustrated in 
Figures 1 and 2 and the open cell with its properties is depicted in Figures 3 and 4. It is seen that 
the ascending region extends over a more narrow horizontal extent than the descending region 
and the velocities of the former are significantly larger in absolute values than those of the latter, 
preserving continuity of mass. As the profile of the horizontally averaged absolute vertical 
velocity indicates, the maximum velocity occurs in the upper half of the convection layer with the 
closed cell attaining a value of 17.9 while the open cell has a value of 18.9. The growth with time of 
the horizontally averaged vertical velocity at the mid-level of the convective layer indicates that 
steady state has been attained. It is noted that 'overshooting' again occurs. The maximum 
velocity of each cell is approximately 40, which is significantly less than that for the dry 
convection model. 
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Figure I .  Isotherms, streamlines and vorticity isopleths for moist convection with initialization (24) 
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Figure 2. Vertical velocity and temperature profiles for moist convection with initialization (24) 
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Figure 3. Isotherms, streamlines and vorticity isopleths for moist convection with initialization (25) 
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Figure 4. Vertical velocity and temperature profiles for moist Convection with initialization (25) 

:;P~LLKKIW: TOYLOR (CRQNY-NIC .  ) 
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The vertical profile of the horizontally averaged temperature exhibits a stable gradient in the 
upper portion of the convective layer. This is due to the inclusion of the latent heat effect. In (2), 
the term involving S indicates that the local rate of temperature increase is proportional to  the 
magnitude of the upward vertical velocity. 

The results so far illustrate that the model basically reproduces the physics of moist convection 
quite well. A larger domain is taken to provide a guide on the preferred mode. 

Yamasaki"' showed that the preferred size of an ascending area for which the growth rate is 
a maximum is uniquely determined while the growth rate increases with an increase in the 
descending area. The descending motion always acts as a stabilizing factor in the pseudo- 
adiabatic process in a conditionally unstable layer which is completely different from the 
convection in an absolutely unstable layer. 

A horizontal extent of D =200 is taken to provide comparisons with the dry convection model. 
The various physical properties of the initial limited extent are again apparent with the additional 
property of an increased aspect ratio as illustrated in Figure 5. For dry convection, initialization 
(25) gave 9 open cells:17 for this moist model there are approximately 5 open cells. Hence, the 
aspect ratio has increased from 2.2 to 4.0. For this domain, 15 1 horizontal grid points are used. In 
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H C R I ~ C ~ T A L L Y - A V E R ~ G E C  TCPIP. 

Figure 5. Moist convection with initialization (251 and D = 2 0 0  
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their finite difference models, Sheu et ~ 1 . ~  used 64 over D=40.0 and Asai and Nakasuji’ used 
0.2 5 Ax 50.3. The resultant value compares favourably with that of Asai and Nakasuji. 

The marginal stability curve for dry convection as described by (9) with S = 0, has marginal 
values of R, = 657, (1, = 2.2 and & = 2.8 for the boundary conditions of this model. As (9) indicates, 
the inclusion of the latent heat effects lowers the marginal stability curve so that R, is now less 
than 657 but that a, and I ,  remain as before. This would then indicate that for a value of R = lo4 
the convective vertical velocity should be greater for moist convection than for dry convection. 
However, the increasing of the aspect ratio of the convection cclls which corresponds to 
decreasing the wavenumber to less than uc would cause the marginal value of R for convection to 
be increased and, hence, reduce the convective vertical velocity at R = 1 0 4 .  It is apparent, 
therefore, that the convective vertical velocity will decrease with increasing aspect ratio for a fixed 
value of S of the order of that in ( 1  1). 

This mathematical model differs significantly from that of Van der Borght and Agee2 in that 
the saturated updraught commences at the base, whereas their latent heat effects entered at 
a height determined by the conservation of moisture equation and they used a significantly larger 
value of K. 

It is apparent that the inclusion of the moisture effects alters the structure of a cell to that of 
a narrow ascending region and a wider descending region with the former of larger velocities than 
the latter, and also alters the preferred mode of convection by increasing the aspect ratio. It, 
therefore, seems reasonable to conclude that the moisture effects contribute towards the aspect 
ratio of atmospheric convection cells, observed to be larger than thc theory had predicted. 

The results of this FEGGTC model of moist convection are evidence that this method may 
play a successful role in this field. From this simplified model, the research may now proceed to 
gradually incorporate such extensions as thermal boundary conditions similar to those of 
Sasaki’ and Van der Borght and Agee’, involve the additional conservation equations of water 
vapour and liquid water as in Asai and Nakamura” and allow for variations in depth of the 
convective cells and perhaps seek a subcell structure through applying varied values of R across 
the convective layer. The computer programs have been constructed in modules so that extension 
to cover further facets requires significantly less work than tne original research. 

& 3 L E R K I N : T A Y L O R  (CRANK-MIC.) STRLAULINCS 
R = 1 . @ - 4 , D E L T =  0 . B I , T I M E =  0.3.NNODES= 637.NUWEL=lO80. 

IDRYS. O . C O N T O U R S = - 9 0 . ( 1 0 . 3 ) 1 3 . 4  

HORIZONTAL EXTENT 

Figure 6. Moist convecLion with an imposed upward vertical velocity above the convective layer 
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For comparison with the finite difference model of Sheu et d 3  a numerical experiment on the 
effect of large-scale vertical motion on moist convection was conducted. They have shown that 
simulation of a large-scale vertical motion above the convective layer by a uniform vertical 
velocity wo (up or down) may be implemented by altering the boundary conditions on $ in this 
model to 

w, 1)=wox, $(x,O)=O, (26) 

$(O, 4 = 0, $(D,z )=woDz,  (27) 
thus, avoiding discontinuities and not destroying conservation properties. Although they used an 
anisotropic ratio of 400, qualitative comparisons may be made. For this trial, the upper boundary 
is insulated and initialization (25) is used. With an upward vertical velocity of 5 the quasi-steady 
cell structure of Figure 6 is depicted, illustrating an increase in the aspect ratio and also showing 
the inflow at the right lateral boundary balancing the net mass flux at the top of the layer due to 
the upward motion. Sheu et al. obtain a similar structure. It is also noted that apart from the 
dominance of this imposed vertical motion, the open-cell structure is maintained. 
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